Convergence of Closed Subsets in a Topological Space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

g*Λ Closed Sets in Topological Space

The generalized closed sets in point set topology have been found considerable interest among general topologists. In this paper, we introduce and study topological properties of g*Λ closed and open sets and its relationships with other generalized closed sets are investigated.

متن کامل

Weak Topologies for the Closed Subsets of a Metrizable Space

The purpose of this article is to propose a unified theory for topologies on the closed subsets of a metrizable space. It can be shown that all of the standard hyperspace topologies—including the Hausdorff metric topology, the Vietoris topology, the Attouch-Wets topology, the Fell topology, the locally finite topology, and the topology of Mosco convergence—arise as weak topologies generated by ...

متن کامل

Uniform Convergence to a Left Invariance on Weakly Compact Subsets

Let  $left{a_alpharight}_{alphain I}$ be a bounded net in a Banach algebra $A$ and $varphi$ a nonzero multiplicative linear functional on $A$. In this paper, we deal with the problem of when $|aa_alpha-varphi(a)a_alpha|to0$ uniformly for all $a$ in weakly compact subsets of $A$. We show that Banach algebras associated to locally compact groups such  as Segal algebras and $L^1$-algebras are resp...

متن کامل

Menger probabilistic normed space is a category topological vector space

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...

متن کامل

Cartesian closed subcategories of topological fuzzes

A category $mathbf{C}$ is called Cartesian closed  provided that it has finite products and for each$mathbf{C}$-object $A$ the functor $(Atimes -): Ara A$ has a right adjoint. It is well known that the category $mathbf{TopFuzz}$  of all topological fuzzes is both complete  and cocomplete, but it is not Cartesian closed. In this paper, we introduce some Cartesian closed subcategories of this cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1965

ISSN: 0002-9939

DOI: 10.2307/2035586